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PROBLEM STATEMENT
In this study we will demonstrate that it is possible to predict 

a known turbine failure using historical data.

On a particular turbine, a blade tore off and completely 

damaged the turbine, requiring extensive and expensive repair 

and replacement. After the event, the question was raised 

whether this failure could have been predicted and localized 

to a specific place inside the turbine.

The specific turbine in question has over 80 measurements 

on it that were considered worthwhile to monitor. Most of 

these were vibrations, but there were also some tempera-

tures, pressures and electrical values. A history of six months 

was deemed long enough, and the frequency of measure-

ment depended upon each individual measurement point 

– some were measured several times per second, others 

only once every few hours. In fact, the data historian stores 

a new value in its database only if the new value differs from 

the last stored value by a predefined parameter. In this way, 

the history matrix contained a realistic picture of an actual 

turbine instrumented with sensors as it is normally done in 

the industry. No enhancements were made to the turbine, its 

instrumentation or the data itself.

During the time leading up to the blade tear and until imme-

diately before it, no sign of the imminent blade tear could 

be detected by any analysis run by the plant engineers 
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either before or after the blade tear was known. Thus, it was 

concluded that the tear was a spontaneous and thus an unpre-

dictable event.

PREDICTING AN EVENT
The data that we were provided to create a model was deliber-

ately cut off two days before the known (historically occurring) 

blade tear on that turbine in order for us to find out whether 

or not the event could have been predicted.

Initially, the machine learning algorithm was provided with 

no data. Then the points measured were presented to the 

algorithm one by one, starting with the first measured point. 

Slowly, the model learned more and more about the system, 

the predictions gradually became more accurate and the 

system was capable of making a prediction for longer and 

longer times into the future. Naturally, the time for which 

the algorithm can make predictions increases with addi-

tional data and experience. Once the last measured point 

was presented to the algorithm, it produced a predication 

valid for the following two days of real time. The result may 

be seen in Figure 1. The actual blade tear that occurred 46 

hours from the end of the available data was predicted to 

occur 48 into the future. Thus, this event is predictable two 

days in advance.

Figure 1 

Here we see the actual measurement (spiky curve) versus 

the model output (smooth line) over a little history (left 

of the vertical line) and for the future three days (right 

of the vertical line. We observe a close correspondence 

between the measurement and the model. Particularly 

the event, the sharp drop, is correctly predicted two days 

in advance.

TURBINE PREDICTION
It is, however, not possible to predict this event any earlier. 

This is because the model must “see” some change in the 

system, i.e. the failure mode that eventually leads to the failure 

must be operating and visible in the data. In general, failure 

modes that are slower can be predicted longer in advance.

It must be emphasized here that the model can only predict 

“an event,” such as the drop of a measurement. It cannot label 

this event with the words “blade tear.” The identification of an 

event as a certain type of event is altogether another matter. 

It is, in principle, possible via the same sort of methods but 

would require many examples of blade tears and this is a 

practical difficulty. Thus, the model is capable of giving a 

specific time when the turbine will suffer a major defect; the 

nature of the defect must, however, be discovered by manual 

search on the physical turbine.

But to be truly helpful, we must be able to locate the damage 

within the large structure of the turbine, so that maintenance 

personnel will not spend days looking for the proverbial needle 

in the haystack.
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LOCALIZING THE PREDICTED 
EVENT
Therefore, fault detection and localization was now done by 

performing an advanced data-mining methodology (singular 

spectrum analysis) that tracks frequency distributions of 

signals over the history and can deduce qualitative changes.

Considering the 80 measurement points, we were able to show 

that only four of these measurements contained an actual 

qualitative shift in their history (the others stayed qualitatively 

the same over the whole history) and that two of these four 

went through such a shift several days before the other two. 

Thus, we were able to determine which two out of 80 locations 

in the turbine were the root cause for the event that was to 

occur within two days. See figure 2 for an illustration.

In this figure, we graph the abnormality as measured by 

singular spectrum analysis over time for each measurement. 

If a system is in some condition for a long time, we may label 

this condition to be “normal.” If this condition changes, we can 

call it “abnormal.” When the abnormality persists, however, 

this new condition eventually becomes normal by virtue of the 

definition of normality as being that condition that has been 

current for a long time. When a system makes a qualitative 

transformation from one persistent state to another, we would 

therefore expect any reasonable abnormality measure to first 

increase (upon the change) and then decrease again (as the 

new state becomes increasingly normal).

What we observe from figure 2 is that two of the measure-

ments become abnormal early in time and two others follow 

suit. When we asked which time-series these were, we found 

that the first two were the radial and axial vibrations of one 

bearing, and the second two were the same vibrations of the 

neighboring bearing. Of course, we cannot be certain that 

there exists a physical cause-effect relationship between 

these three events: (1) first bearing changing its vibration 

behavior, (2) second bearing changing its vibration behavior, 

and (3) blade tear. The available data strongly suggests this 

link however. Indeed, the blade that tore off was very close to 

the first bearing that changed its vibration behavior. Thus we 

were successful in localizing the fault within the large turbine.

Figure 2

We compute deviations from normal being tracked over a 

window of about four days length. So we observe that two 

sensors start behaving abnormally and two days later, 

two other sensors behave abnormally. About 3.5 days 

after the start of the abnormal behavior, this new behavior 

has become normal, so the deviation from normal is 

seen to reduce again. Therefore, we observe a qualitative 

change in the performance of these four points.

CONCLUSION
It is possible to reliably and accurately predict a failure on a 

steam turbine two days in advance. Furthermore, it is possible 

to locate the cause of this event within the turbine so that the 

location covered by the sensor that measures the anomaly can 

be focused on by the maintenance personnel. The combination 

of these two results, allows preventative maintenance on a 

turbine to be performed in a real industrial setting saving 

the operator a great expense.
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